Oracle Cloud Infrastructure v2.31.0 published on Thursday, Apr 17, 2025 by Pulumi
oci.AiVision.getModel
Explore with Pulumi AI
This data source provides details about a specific Model resource in Oracle Cloud Infrastructure Ai Vision service.
Gets a Model by identifier
Example Usage
import * as pulumi from "@pulumi/pulumi";
import * as oci from "@pulumi/oci";
const testModel = oci.AiVision.getModel({
    modelId: testModelOciAiVisionModel.id,
});
import pulumi
import pulumi_oci as oci
test_model = oci.AiVision.get_model(model_id=test_model_oci_ai_vision_model["id"])
package main
import (
	"github.com/pulumi/pulumi-oci/sdk/v2/go/oci/aivision"
	"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
	pulumi.Run(func(ctx *pulumi.Context) error {
		_, err := aivision.GetModel(ctx, &aivision.GetModelArgs{
			ModelId: testModelOciAiVisionModel.Id,
		}, nil)
		if err != nil {
			return err
		}
		return nil
	})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Oci = Pulumi.Oci;
return await Deployment.RunAsync(() => 
{
    var testModel = Oci.AiVision.GetModel.Invoke(new()
    {
        ModelId = testModelOciAiVisionModel.Id,
    });
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.oci.AiVision.AiVisionFunctions;
import com.pulumi.oci.AiVision.inputs.GetModelArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
    public static void main(String[] args) {
        Pulumi.run(App::stack);
    }
    public static void stack(Context ctx) {
        final var testModel = AiVisionFunctions.getModel(GetModelArgs.builder()
            .modelId(testModelOciAiVisionModel.id())
            .build());
    }
}
variables:
  testModel:
    fn::invoke:
      function: oci:AiVision:getModel
      arguments:
        modelId: ${testModelOciAiVisionModel.id}
Using getModel
Two invocation forms are available. The direct form accepts plain arguments and either blocks until the result value is available, or returns a Promise-wrapped result. The output form accepts Input-wrapped arguments and returns an Output-wrapped result.
function getModel(args: GetModelArgs, opts?: InvokeOptions): Promise<GetModelResult>
function getModelOutput(args: GetModelOutputArgs, opts?: InvokeOptions): Output<GetModelResult>def get_model(model_id: Optional[str] = None,
              opts: Optional[InvokeOptions] = None) -> GetModelResult
def get_model_output(model_id: Optional[pulumi.Input[str]] = None,
              opts: Optional[InvokeOptions] = None) -> Output[GetModelResult]func GetModel(ctx *Context, args *GetModelArgs, opts ...InvokeOption) (*GetModelResult, error)
func GetModelOutput(ctx *Context, args *GetModelOutputArgs, opts ...InvokeOption) GetModelResultOutput> Note: This function is named GetModel in the Go SDK.
public static class GetModel 
{
    public static Task<GetModelResult> InvokeAsync(GetModelArgs args, InvokeOptions? opts = null)
    public static Output<GetModelResult> Invoke(GetModelInvokeArgs args, InvokeOptions? opts = null)
}public static CompletableFuture<GetModelResult> getModel(GetModelArgs args, InvokeOptions options)
public static Output<GetModelResult> getModel(GetModelArgs args, InvokeOptions options)
fn::invoke:
  function: oci:AiVision/getModel:getModel
  arguments:
    # arguments dictionaryThe following arguments are supported:
- Model
Id string - unique Model identifier
 
- Model
Id string - unique Model identifier
 
- model
Id String - unique Model identifier
 
- model
Id string - unique Model identifier
 
- model_
id str - unique Model identifier
 
- model
Id String - unique Model identifier
 
getModel Result
The following output properties are available:
- Average
Precision double - Average precision of the trained model
 - Compartment
Id string - Compartment Identifier
 - Confidence
Threshold double - Confidence ratio of the calculation
 - Dictionary<string, string>
 - Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: 
{"foo-namespace.bar-key": "value"} - Description string
 - A short description of the model.
 - Display
Name string - Model Identifier, can be renamed
 - Dictionary<string, string>
 - Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: 
{"bar-key": "value"} - Id string
 - Unique identifier that is immutable on creation
 - Is
Quick boolMode  - If It's true, Training is set for recommended epochs needed for quick training.
 - Lifecycle
Details string - A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
 - Max
Training doubleDuration In Hours  - The maximum duration in hours for which the training will run.
 - Metrics string
 - Complete Training Metrics for successful trained model
 - Model
Id string - Model
Type string - Type of the Model.
 - Model
Version string - The version of the model
 - Precision double
 - Precision of the trained model
 - Project
Id string - The OCID of the project to associate with the model.
 - Recall double
 - Recall of the trained model
 - State string
 - The current state of the Model.
 - Dictionary<string, string>
 - Usage of system tag keys. These predefined keys are scoped to namespaces. Example: 
{"orcl-cloud.free-tier-retained": "true"} - Test
Image intCount  - Total number of testing Images
 - Testing
Datasets List<GetModel Testing Dataset>  - The base entity for a Dataset, which is the input for Model creation.
 - Time
Created string - The time the Model was created. An RFC3339 formatted datetime string
 - Time
Updated string - The time the Model was updated. An RFC3339 formatted datetime string
 - Total
Image intCount  - Total number of training Images
 - Trained
Duration doubleIn Hours  - Total hours actually used for training
 - Training
Datasets List<GetModel Training Dataset>  - The base entity for a Dataset, which is the input for Model creation.
 - Validation
Datasets List<GetModel Validation Dataset>  - The base entity for a Dataset, which is the input for Model creation.
 
- Average
Precision float64 - Average precision of the trained model
 - Compartment
Id string - Compartment Identifier
 - Confidence
Threshold float64 - Confidence ratio of the calculation
 - map[string]string
 - Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: 
{"foo-namespace.bar-key": "value"} - Description string
 - A short description of the model.
 - Display
Name string - Model Identifier, can be renamed
 - map[string]string
 - Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: 
{"bar-key": "value"} - Id string
 - Unique identifier that is immutable on creation
 - Is
Quick boolMode  - If It's true, Training is set for recommended epochs needed for quick training.
 - Lifecycle
Details string - A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
 - Max
Training float64Duration In Hours  - The maximum duration in hours for which the training will run.
 - Metrics string
 - Complete Training Metrics for successful trained model
 - Model
Id string - Model
Type string - Type of the Model.
 - Model
Version string - The version of the model
 - Precision float64
 - Precision of the trained model
 - Project
Id string - The OCID of the project to associate with the model.
 - Recall float64
 - Recall of the trained model
 - State string
 - The current state of the Model.
 - map[string]string
 - Usage of system tag keys. These predefined keys are scoped to namespaces. Example: 
{"orcl-cloud.free-tier-retained": "true"} - Test
Image intCount  - Total number of testing Images
 - Testing
Datasets []GetModel Testing Dataset  - The base entity for a Dataset, which is the input for Model creation.
 - Time
Created string - The time the Model was created. An RFC3339 formatted datetime string
 - Time
Updated string - The time the Model was updated. An RFC3339 formatted datetime string
 - Total
Image intCount  - Total number of training Images
 - Trained
Duration float64In Hours  - Total hours actually used for training
 - Training
Datasets []GetModel Training Dataset  - The base entity for a Dataset, which is the input for Model creation.
 - Validation
Datasets []GetModel Validation Dataset  - The base entity for a Dataset, which is the input for Model creation.
 
- average
Precision Double - Average precision of the trained model
 - compartment
Id String - Compartment Identifier
 - confidence
Threshold Double - Confidence ratio of the calculation
 - Map<String,String>
 - Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: 
{"foo-namespace.bar-key": "value"} - description String
 - A short description of the model.
 - display
Name String - Model Identifier, can be renamed
 - Map<String,String>
 - Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: 
{"bar-key": "value"} - id String
 - Unique identifier that is immutable on creation
 - is
Quick BooleanMode  - If It's true, Training is set for recommended epochs needed for quick training.
 - lifecycle
Details String - A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
 - max
Training DoubleDuration In Hours  - The maximum duration in hours for which the training will run.
 - metrics String
 - Complete Training Metrics for successful trained model
 - model
Id String - model
Type String - Type of the Model.
 - model
Version String - The version of the model
 - precision Double
 - Precision of the trained model
 - project
Id String - The OCID of the project to associate with the model.
 - recall Double
 - Recall of the trained model
 - state String
 - The current state of the Model.
 - Map<String,String>
 - Usage of system tag keys. These predefined keys are scoped to namespaces. Example: 
{"orcl-cloud.free-tier-retained": "true"} - test
Image IntegerCount  - Total number of testing Images
 - testing
Datasets List<GetModel Testing Dataset>  - The base entity for a Dataset, which is the input for Model creation.
 - time
Created String - The time the Model was created. An RFC3339 formatted datetime string
 - time
Updated String - The time the Model was updated. An RFC3339 formatted datetime string
 - total
Image IntegerCount  - Total number of training Images
 - trained
Duration DoubleIn Hours  - Total hours actually used for training
 - training
Datasets List<GetModel Training Dataset>  - The base entity for a Dataset, which is the input for Model creation.
 - validation
Datasets List<GetModel Validation Dataset>  - The base entity for a Dataset, which is the input for Model creation.
 
- average
Precision number - Average precision of the trained model
 - compartment
Id string - Compartment Identifier
 - confidence
Threshold number - Confidence ratio of the calculation
 - {[key: string]: string}
 - Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: 
{"foo-namespace.bar-key": "value"} - description string
 - A short description of the model.
 - display
Name string - Model Identifier, can be renamed
 - {[key: string]: string}
 - Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: 
{"bar-key": "value"} - id string
 - Unique identifier that is immutable on creation
 - is
Quick booleanMode  - If It's true, Training is set for recommended epochs needed for quick training.
 - lifecycle
Details string - A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
 - max
Training numberDuration In Hours  - The maximum duration in hours for which the training will run.
 - metrics string
 - Complete Training Metrics for successful trained model
 - model
Id string - model
Type string - Type of the Model.
 - model
Version string - The version of the model
 - precision number
 - Precision of the trained model
 - project
Id string - The OCID of the project to associate with the model.
 - recall number
 - Recall of the trained model
 - state string
 - The current state of the Model.
 - {[key: string]: string}
 - Usage of system tag keys. These predefined keys are scoped to namespaces. Example: 
{"orcl-cloud.free-tier-retained": "true"} - test
Image numberCount  - Total number of testing Images
 - testing
Datasets GetModel Testing Dataset[]  - The base entity for a Dataset, which is the input for Model creation.
 - time
Created string - The time the Model was created. An RFC3339 formatted datetime string
 - time
Updated string - The time the Model was updated. An RFC3339 formatted datetime string
 - total
Image numberCount  - Total number of training Images
 - trained
Duration numberIn Hours  - Total hours actually used for training
 - training
Datasets GetModel Training Dataset[]  - The base entity for a Dataset, which is the input for Model creation.
 - validation
Datasets GetModel Validation Dataset[]  - The base entity for a Dataset, which is the input for Model creation.
 
- average_
precision float - Average precision of the trained model
 - compartment_
id str - Compartment Identifier
 - confidence_
threshold float - Confidence ratio of the calculation
 - Mapping[str, str]
 - Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: 
{"foo-namespace.bar-key": "value"} - description str
 - A short description of the model.
 - display_
name str - Model Identifier, can be renamed
 - Mapping[str, str]
 - Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: 
{"bar-key": "value"} - id str
 - Unique identifier that is immutable on creation
 - is_
quick_ boolmode  - If It's true, Training is set for recommended epochs needed for quick training.
 - lifecycle_
details str - A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
 - max_
training_ floatduration_ in_ hours  - The maximum duration in hours for which the training will run.
 - metrics str
 - Complete Training Metrics for successful trained model
 - model_
id str - model_
type str - Type of the Model.
 - model_
version str - The version of the model
 - precision float
 - Precision of the trained model
 - project_
id str - The OCID of the project to associate with the model.
 - recall float
 - Recall of the trained model
 - state str
 - The current state of the Model.
 - Mapping[str, str]
 - Usage of system tag keys. These predefined keys are scoped to namespaces. Example: 
{"orcl-cloud.free-tier-retained": "true"} - test_
image_ intcount  - Total number of testing Images
 - testing_
datasets Sequence[aivision.Get Model Testing Dataset]  - The base entity for a Dataset, which is the input for Model creation.
 - time_
created str - The time the Model was created. An RFC3339 formatted datetime string
 - time_
updated str - The time the Model was updated. An RFC3339 formatted datetime string
 - total_
image_ intcount  - Total number of training Images
 - trained_
duration_ floatin_ hours  - Total hours actually used for training
 - training_
datasets Sequence[aivision.Get Model Training Dataset]  - The base entity for a Dataset, which is the input for Model creation.
 - validation_
datasets Sequence[aivision.Get Model Validation Dataset]  - The base entity for a Dataset, which is the input for Model creation.
 
- average
Precision Number - Average precision of the trained model
 - compartment
Id String - Compartment Identifier
 - confidence
Threshold Number - Confidence ratio of the calculation
 - Map<String>
 - Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: 
{"foo-namespace.bar-key": "value"} - description String
 - A short description of the model.
 - display
Name String - Model Identifier, can be renamed
 - Map<String>
 - Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: 
{"bar-key": "value"} - id String
 - Unique identifier that is immutable on creation
 - is
Quick BooleanMode  - If It's true, Training is set for recommended epochs needed for quick training.
 - lifecycle
Details String - A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
 - max
Training NumberDuration In Hours  - The maximum duration in hours for which the training will run.
 - metrics String
 - Complete Training Metrics for successful trained model
 - model
Id String - model
Type String - Type of the Model.
 - model
Version String - The version of the model
 - precision Number
 - Precision of the trained model
 - project
Id String - The OCID of the project to associate with the model.
 - recall Number
 - Recall of the trained model
 - state String
 - The current state of the Model.
 - Map<String>
 - Usage of system tag keys. These predefined keys are scoped to namespaces. Example: 
{"orcl-cloud.free-tier-retained": "true"} - test
Image NumberCount  - Total number of testing Images
 - testing
Datasets List<Property Map> - The base entity for a Dataset, which is the input for Model creation.
 - time
Created String - The time the Model was created. An RFC3339 formatted datetime string
 - time
Updated String - The time the Model was updated. An RFC3339 formatted datetime string
 - total
Image NumberCount  - Total number of training Images
 - trained
Duration NumberIn Hours  - Total hours actually used for training
 - training
Datasets List<Property Map> - The base entity for a Dataset, which is the input for Model creation.
 - validation
Datasets List<Property Map> - The base entity for a Dataset, which is the input for Model creation.
 
Supporting Types
GetModelTestingDataset   
- Bucket string
 - The name of the ObjectStorage bucket that contains the input data file.
 - Dataset
Id string - The OCID of the Data Science Labeling Dataset.
 - Dataset
Type string - Type of the Dataset.
 - Namespace
Name string - The namespace name of the ObjectStorage bucket that contains the input data file.
 - Object string
 - The object name of the input data file.
 
- Bucket string
 - The name of the ObjectStorage bucket that contains the input data file.
 - Dataset
Id string - The OCID of the Data Science Labeling Dataset.
 - Dataset
Type string - Type of the Dataset.
 - Namespace
Name string - The namespace name of the ObjectStorage bucket that contains the input data file.
 - Object string
 - The object name of the input data file.
 
- bucket String
 - The name of the ObjectStorage bucket that contains the input data file.
 - dataset
Id String - The OCID of the Data Science Labeling Dataset.
 - dataset
Type String - Type of the Dataset.
 - namespace
Name String - The namespace name of the ObjectStorage bucket that contains the input data file.
 - object String
 - The object name of the input data file.
 
- bucket string
 - The name of the ObjectStorage bucket that contains the input data file.
 - dataset
Id string - The OCID of the Data Science Labeling Dataset.
 - dataset
Type string - Type of the Dataset.
 - namespace
Name string - The namespace name of the ObjectStorage bucket that contains the input data file.
 - object string
 - The object name of the input data file.
 
- bucket str
 - The name of the ObjectStorage bucket that contains the input data file.
 - dataset_
id str - The OCID of the Data Science Labeling Dataset.
 - dataset_
type str - Type of the Dataset.
 - namespace_
name str - The namespace name of the ObjectStorage bucket that contains the input data file.
 - object str
 - The object name of the input data file.
 
- bucket String
 - The name of the ObjectStorage bucket that contains the input data file.
 - dataset
Id String - The OCID of the Data Science Labeling Dataset.
 - dataset
Type String - Type of the Dataset.
 - namespace
Name String - The namespace name of the ObjectStorage bucket that contains the input data file.
 - object String
 - The object name of the input data file.
 
GetModelTrainingDataset   
- Bucket string
 - The name of the ObjectStorage bucket that contains the input data file.
 - Dataset
Id string - The OCID of the Data Science Labeling Dataset.
 - Dataset
Type string - Type of the Dataset.
 - Namespace
Name string - The namespace name of the ObjectStorage bucket that contains the input data file.
 - Object string
 - The object name of the input data file.
 
- Bucket string
 - The name of the ObjectStorage bucket that contains the input data file.
 - Dataset
Id string - The OCID of the Data Science Labeling Dataset.
 - Dataset
Type string - Type of the Dataset.
 - Namespace
Name string - The namespace name of the ObjectStorage bucket that contains the input data file.
 - Object string
 - The object name of the input data file.
 
- bucket String
 - The name of the ObjectStorage bucket that contains the input data file.
 - dataset
Id String - The OCID of the Data Science Labeling Dataset.
 - dataset
Type String - Type of the Dataset.
 - namespace
Name String - The namespace name of the ObjectStorage bucket that contains the input data file.
 - object String
 - The object name of the input data file.
 
- bucket string
 - The name of the ObjectStorage bucket that contains the input data file.
 - dataset
Id string - The OCID of the Data Science Labeling Dataset.
 - dataset
Type string - Type of the Dataset.
 - namespace
Name string - The namespace name of the ObjectStorage bucket that contains the input data file.
 - object string
 - The object name of the input data file.
 
- bucket str
 - The name of the ObjectStorage bucket that contains the input data file.
 - dataset_
id str - The OCID of the Data Science Labeling Dataset.
 - dataset_
type str - Type of the Dataset.
 - namespace_
name str - The namespace name of the ObjectStorage bucket that contains the input data file.
 - object str
 - The object name of the input data file.
 
- bucket String
 - The name of the ObjectStorage bucket that contains the input data file.
 - dataset
Id String - The OCID of the Data Science Labeling Dataset.
 - dataset
Type String - Type of the Dataset.
 - namespace
Name String - The namespace name of the ObjectStorage bucket that contains the input data file.
 - object String
 - The object name of the input data file.
 
GetModelValidationDataset   
- Bucket string
 - The name of the ObjectStorage bucket that contains the input data file.
 - Dataset
Id string - The OCID of the Data Science Labeling Dataset.
 - Dataset
Type string - Type of the Dataset.
 - Namespace
Name string - The namespace name of the ObjectStorage bucket that contains the input data file.
 - Object string
 - The object name of the input data file.
 
- Bucket string
 - The name of the ObjectStorage bucket that contains the input data file.
 - Dataset
Id string - The OCID of the Data Science Labeling Dataset.
 - Dataset
Type string - Type of the Dataset.
 - Namespace
Name string - The namespace name of the ObjectStorage bucket that contains the input data file.
 - Object string
 - The object name of the input data file.
 
- bucket String
 - The name of the ObjectStorage bucket that contains the input data file.
 - dataset
Id String - The OCID of the Data Science Labeling Dataset.
 - dataset
Type String - Type of the Dataset.
 - namespace
Name String - The namespace name of the ObjectStorage bucket that contains the input data file.
 - object String
 - The object name of the input data file.
 
- bucket string
 - The name of the ObjectStorage bucket that contains the input data file.
 - dataset
Id string - The OCID of the Data Science Labeling Dataset.
 - dataset
Type string - Type of the Dataset.
 - namespace
Name string - The namespace name of the ObjectStorage bucket that contains the input data file.
 - object string
 - The object name of the input data file.
 
- bucket str
 - The name of the ObjectStorage bucket that contains the input data file.
 - dataset_
id str - The OCID of the Data Science Labeling Dataset.
 - dataset_
type str - Type of the Dataset.
 - namespace_
name str - The namespace name of the ObjectStorage bucket that contains the input data file.
 - object str
 - The object name of the input data file.
 
- bucket String
 - The name of the ObjectStorage bucket that contains the input data file.
 - dataset
Id String - The OCID of the Data Science Labeling Dataset.
 - dataset
Type String - Type of the Dataset.
 - namespace
Name String - The namespace name of the ObjectStorage bucket that contains the input data file.
 - object String
 - The object name of the input data file.
 
Package Details
- Repository
 - oci pulumi/pulumi-oci
 - License
 - Apache-2.0
 - Notes
 - This Pulumi package is based on the 
ociTerraform Provider.