Oracle Cloud Infrastructure v2.31.0 published on Thursday, Apr 17, 2025 by Pulumi
oci.AiDocument.getModel
Explore with Pulumi AI
This data source provides details about a specific Model resource in Oracle Cloud Infrastructure Ai Document service.
Get a model by identifier.
Example Usage
import * as pulumi from "@pulumi/pulumi";
import * as oci from "@pulumi/oci";
const testModel = oci.AiDocument.getModel({
    modelId: testModelOciAiDocumentModel.id,
});
import pulumi
import pulumi_oci as oci
test_model = oci.AiDocument.get_model(model_id=test_model_oci_ai_document_model["id"])
package main
import (
	"github.com/pulumi/pulumi-oci/sdk/v2/go/oci/aidocument"
	"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
	pulumi.Run(func(ctx *pulumi.Context) error {
		_, err := aidocument.GetModel(ctx, &aidocument.GetModelArgs{
			ModelId: testModelOciAiDocumentModel.Id,
		}, nil)
		if err != nil {
			return err
		}
		return nil
	})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Oci = Pulumi.Oci;
return await Deployment.RunAsync(() => 
{
    var testModel = Oci.AiDocument.GetModel.Invoke(new()
    {
        ModelId = testModelOciAiDocumentModel.Id,
    });
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.oci.AiDocument.AiDocumentFunctions;
import com.pulumi.oci.AiDocument.inputs.GetModelArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
    public static void main(String[] args) {
        Pulumi.run(App::stack);
    }
    public static void stack(Context ctx) {
        final var testModel = AiDocumentFunctions.getModel(GetModelArgs.builder()
            .modelId(testModelOciAiDocumentModel.id())
            .build());
    }
}
variables:
  testModel:
    fn::invoke:
      function: oci:AiDocument:getModel
      arguments:
        modelId: ${testModelOciAiDocumentModel.id}
Using getModel
Two invocation forms are available. The direct form accepts plain arguments and either blocks until the result value is available, or returns a Promise-wrapped result. The output form accepts Input-wrapped arguments and returns an Output-wrapped result.
function getModel(args: GetModelArgs, opts?: InvokeOptions): Promise<GetModelResult>
function getModelOutput(args: GetModelOutputArgs, opts?: InvokeOptions): Output<GetModelResult>def get_model(model_id: Optional[str] = None,
              opts: Optional[InvokeOptions] = None) -> GetModelResult
def get_model_output(model_id: Optional[pulumi.Input[str]] = None,
              opts: Optional[InvokeOptions] = None) -> Output[GetModelResult]func GetModel(ctx *Context, args *GetModelArgs, opts ...InvokeOption) (*GetModelResult, error)
func GetModelOutput(ctx *Context, args *GetModelOutputArgs, opts ...InvokeOption) GetModelResultOutput> Note: This function is named GetModel in the Go SDK.
public static class GetModel 
{
    public static Task<GetModelResult> InvokeAsync(GetModelArgs args, InvokeOptions? opts = null)
    public static Output<GetModelResult> Invoke(GetModelInvokeArgs args, InvokeOptions? opts = null)
}public static CompletableFuture<GetModelResult> getModel(GetModelArgs args, InvokeOptions options)
public static Output<GetModelResult> getModel(GetModelArgs args, InvokeOptions options)
fn::invoke:
  function: oci:AiDocument/getModel:getModel
  arguments:
    # arguments dictionaryThe following arguments are supported:
- Model
Id string - A unique model identifier.
 
- Model
Id string - A unique model identifier.
 
- model
Id String - A unique model identifier.
 
- model
Id string - A unique model identifier.
 
- model_
id str - A unique model identifier.
 
- model
Id String - A unique model identifier.
 
getModel Result
The following output properties are available:
- Compartment
Id string - The compartment identifier.
 - Component
Models List<GetModel Component Model>  - The OCID collection of active custom Key Value models that need to be composed.
 - Dictionary<string, string>
 - Defined tags for this resource. Each key is predefined and scoped to a namespace. For example: 
{"foo-namespace": {"bar-key": "value"}} - Description string
 - An optional description of the model.
 - Display
Name string - A human-friendly name for the model, which can be changed.
 - Dictionary<string, string>
 - A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example: 
{"bar-key": "value"} - Id string
 - A unique identifier that is immutable after creation.
 - Is
Composed boolModel  - Set to true when the model is created by using multiple key value extraction models.
 - Is
Quick boolMode  - Set to true when experimenting with a new model type or dataset, so model training is quick, with a predefined low number of passes through the training data.
 - Labels List<string>
 - The collection of labels used to train the custom model.
 - Lifecycle
Details string - A message describing the current state in more detail, that can provide actionable information if training failed.
 - Max
Training doubleTime In Hours  - The maximum model training time in hours, expressed as a decimal fraction.
 - Metrics
List<Get
Model Metric>  - Trained Model Metrics.
 - Model
Id string - The OCID of active custom Key Value model that need to be composed.
 - Model
Type string - The type of the Document model.
 - Model
Version string - The version of the model.
 - Project
Id string - The OCID of the project that contains the model.
 - State string
 - The current state of the model.
 - Dictionary<string, string>
 - Usage of system tag keys. These predefined keys are scoped to namespaces. For example: 
{"orcl-cloud": {"free-tier-retained": "true"}} - Tenancy
Id string - The tenancy id of the model.
 - Testing
Datasets List<GetModel Testing Dataset>  - The base entity which is the input for creating and training a model.
 - Time
Created string - When the model was created, as an RFC3339 datetime string.
 - Time
Updated string - When the model was updated, as an RFC3339 datetime string.
 - Trained
Time doubleIn Hours  - The total hours actually used for model training.
 - Training
Datasets List<GetModel Training Dataset>  - The base entity which is the input for creating and training a model.
 - Validation
Datasets List<GetModel Validation Dataset>  - The base entity which is the input for creating and training a model.
 
- Compartment
Id string - The compartment identifier.
 - Component
Models []GetModel Component Model  - The OCID collection of active custom Key Value models that need to be composed.
 - map[string]string
 - Defined tags for this resource. Each key is predefined and scoped to a namespace. For example: 
{"foo-namespace": {"bar-key": "value"}} - Description string
 - An optional description of the model.
 - Display
Name string - A human-friendly name for the model, which can be changed.
 - map[string]string
 - A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example: 
{"bar-key": "value"} - Id string
 - A unique identifier that is immutable after creation.
 - Is
Composed boolModel  - Set to true when the model is created by using multiple key value extraction models.
 - Is
Quick boolMode  - Set to true when experimenting with a new model type or dataset, so model training is quick, with a predefined low number of passes through the training data.
 - Labels []string
 - The collection of labels used to train the custom model.
 - Lifecycle
Details string - A message describing the current state in more detail, that can provide actionable information if training failed.
 - Max
Training float64Time In Hours  - The maximum model training time in hours, expressed as a decimal fraction.
 - Metrics
[]Get
Model Metric  - Trained Model Metrics.
 - Model
Id string - The OCID of active custom Key Value model that need to be composed.
 - Model
Type string - The type of the Document model.
 - Model
Version string - The version of the model.
 - Project
Id string - The OCID of the project that contains the model.
 - State string
 - The current state of the model.
 - map[string]string
 - Usage of system tag keys. These predefined keys are scoped to namespaces. For example: 
{"orcl-cloud": {"free-tier-retained": "true"}} - Tenancy
Id string - The tenancy id of the model.
 - Testing
Datasets []GetModel Testing Dataset  - The base entity which is the input for creating and training a model.
 - Time
Created string - When the model was created, as an RFC3339 datetime string.
 - Time
Updated string - When the model was updated, as an RFC3339 datetime string.
 - Trained
Time float64In Hours  - The total hours actually used for model training.
 - Training
Datasets []GetModel Training Dataset  - The base entity which is the input for creating and training a model.
 - Validation
Datasets []GetModel Validation Dataset  - The base entity which is the input for creating and training a model.
 
- compartment
Id String - The compartment identifier.
 - component
Models List<GetModel Component Model>  - The OCID collection of active custom Key Value models that need to be composed.
 - Map<String,String>
 - Defined tags for this resource. Each key is predefined and scoped to a namespace. For example: 
{"foo-namespace": {"bar-key": "value"}} - description String
 - An optional description of the model.
 - display
Name String - A human-friendly name for the model, which can be changed.
 - Map<String,String>
 - A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example: 
{"bar-key": "value"} - id String
 - A unique identifier that is immutable after creation.
 - is
Composed BooleanModel  - Set to true when the model is created by using multiple key value extraction models.
 - is
Quick BooleanMode  - Set to true when experimenting with a new model type or dataset, so model training is quick, with a predefined low number of passes through the training data.
 - labels List<String>
 - The collection of labels used to train the custom model.
 - lifecycle
Details String - A message describing the current state in more detail, that can provide actionable information if training failed.
 - max
Training DoubleTime In Hours  - The maximum model training time in hours, expressed as a decimal fraction.
 - metrics
List<Get
Model Metric>  - Trained Model Metrics.
 - model
Id String - The OCID of active custom Key Value model that need to be composed.
 - model
Type String - The type of the Document model.
 - model
Version String - The version of the model.
 - project
Id String - The OCID of the project that contains the model.
 - state String
 - The current state of the model.
 - Map<String,String>
 - Usage of system tag keys. These predefined keys are scoped to namespaces. For example: 
{"orcl-cloud": {"free-tier-retained": "true"}} - tenancy
Id String - The tenancy id of the model.
 - testing
Datasets List<GetModel Testing Dataset>  - The base entity which is the input for creating and training a model.
 - time
Created String - When the model was created, as an RFC3339 datetime string.
 - time
Updated String - When the model was updated, as an RFC3339 datetime string.
 - trained
Time DoubleIn Hours  - The total hours actually used for model training.
 - training
Datasets List<GetModel Training Dataset>  - The base entity which is the input for creating and training a model.
 - validation
Datasets List<GetModel Validation Dataset>  - The base entity which is the input for creating and training a model.
 
- compartment
Id string - The compartment identifier.
 - component
Models GetModel Component Model[]  - The OCID collection of active custom Key Value models that need to be composed.
 - {[key: string]: string}
 - Defined tags for this resource. Each key is predefined and scoped to a namespace. For example: 
{"foo-namespace": {"bar-key": "value"}} - description string
 - An optional description of the model.
 - display
Name string - A human-friendly name for the model, which can be changed.
 - {[key: string]: string}
 - A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example: 
{"bar-key": "value"} - id string
 - A unique identifier that is immutable after creation.
 - is
Composed booleanModel  - Set to true when the model is created by using multiple key value extraction models.
 - is
Quick booleanMode  - Set to true when experimenting with a new model type or dataset, so model training is quick, with a predefined low number of passes through the training data.
 - labels string[]
 - The collection of labels used to train the custom model.
 - lifecycle
Details string - A message describing the current state in more detail, that can provide actionable information if training failed.
 - max
Training numberTime In Hours  - The maximum model training time in hours, expressed as a decimal fraction.
 - metrics
Get
Model Metric[]  - Trained Model Metrics.
 - model
Id string - The OCID of active custom Key Value model that need to be composed.
 - model
Type string - The type of the Document model.
 - model
Version string - The version of the model.
 - project
Id string - The OCID of the project that contains the model.
 - state string
 - The current state of the model.
 - {[key: string]: string}
 - Usage of system tag keys. These predefined keys are scoped to namespaces. For example: 
{"orcl-cloud": {"free-tier-retained": "true"}} - tenancy
Id string - The tenancy id of the model.
 - testing
Datasets GetModel Testing Dataset[]  - The base entity which is the input for creating and training a model.
 - time
Created string - When the model was created, as an RFC3339 datetime string.
 - time
Updated string - When the model was updated, as an RFC3339 datetime string.
 - trained
Time numberIn Hours  - The total hours actually used for model training.
 - training
Datasets GetModel Training Dataset[]  - The base entity which is the input for creating and training a model.
 - validation
Datasets GetModel Validation Dataset[]  - The base entity which is the input for creating and training a model.
 
- compartment_
id str - The compartment identifier.
 - component_
models Sequence[aidocument.Get Model Component Model]  - The OCID collection of active custom Key Value models that need to be composed.
 - Mapping[str, str]
 - Defined tags for this resource. Each key is predefined and scoped to a namespace. For example: 
{"foo-namespace": {"bar-key": "value"}} - description str
 - An optional description of the model.
 - display_
name str - A human-friendly name for the model, which can be changed.
 - Mapping[str, str]
 - A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example: 
{"bar-key": "value"} - id str
 - A unique identifier that is immutable after creation.
 - is_
composed_ boolmodel  - Set to true when the model is created by using multiple key value extraction models.
 - is_
quick_ boolmode  - Set to true when experimenting with a new model type or dataset, so model training is quick, with a predefined low number of passes through the training data.
 - labels Sequence[str]
 - The collection of labels used to train the custom model.
 - lifecycle_
details str - A message describing the current state in more detail, that can provide actionable information if training failed.
 - max_
training_ floattime_ in_ hours  - The maximum model training time in hours, expressed as a decimal fraction.
 - metrics
Sequence[aidocument.
Get Model Metric]  - Trained Model Metrics.
 - model_
id str - The OCID of active custom Key Value model that need to be composed.
 - model_
type str - The type of the Document model.
 - model_
version str - The version of the model.
 - project_
id str - The OCID of the project that contains the model.
 - state str
 - The current state of the model.
 - Mapping[str, str]
 - Usage of system tag keys. These predefined keys are scoped to namespaces. For example: 
{"orcl-cloud": {"free-tier-retained": "true"}} - tenancy_
id str - The tenancy id of the model.
 - testing_
datasets Sequence[aidocument.Get Model Testing Dataset]  - The base entity which is the input for creating and training a model.
 - time_
created str - When the model was created, as an RFC3339 datetime string.
 - time_
updated str - When the model was updated, as an RFC3339 datetime string.
 - trained_
time_ floatin_ hours  - The total hours actually used for model training.
 - training_
datasets Sequence[aidocument.Get Model Training Dataset]  - The base entity which is the input for creating and training a model.
 - validation_
datasets Sequence[aidocument.Get Model Validation Dataset]  - The base entity which is the input for creating and training a model.
 
- compartment
Id String - The compartment identifier.
 - component
Models List<Property Map> - The OCID collection of active custom Key Value models that need to be composed.
 - Map<String>
 - Defined tags for this resource. Each key is predefined and scoped to a namespace. For example: 
{"foo-namespace": {"bar-key": "value"}} - description String
 - An optional description of the model.
 - display
Name String - A human-friendly name for the model, which can be changed.
 - Map<String>
 - A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example: 
{"bar-key": "value"} - id String
 - A unique identifier that is immutable after creation.
 - is
Composed BooleanModel  - Set to true when the model is created by using multiple key value extraction models.
 - is
Quick BooleanMode  - Set to true when experimenting with a new model type or dataset, so model training is quick, with a predefined low number of passes through the training data.
 - labels List<String>
 - The collection of labels used to train the custom model.
 - lifecycle
Details String - A message describing the current state in more detail, that can provide actionable information if training failed.
 - max
Training NumberTime In Hours  - The maximum model training time in hours, expressed as a decimal fraction.
 - metrics List<Property Map>
 - Trained Model Metrics.
 - model
Id String - The OCID of active custom Key Value model that need to be composed.
 - model
Type String - The type of the Document model.
 - model
Version String - The version of the model.
 - project
Id String - The OCID of the project that contains the model.
 - state String
 - The current state of the model.
 - Map<String>
 - Usage of system tag keys. These predefined keys are scoped to namespaces. For example: 
{"orcl-cloud": {"free-tier-retained": "true"}} - tenancy
Id String - The tenancy id of the model.
 - testing
Datasets List<Property Map> - The base entity which is the input for creating and training a model.
 - time
Created String - When the model was created, as an RFC3339 datetime string.
 - time
Updated String - When the model was updated, as an RFC3339 datetime string.
 - trained
Time NumberIn Hours  - The total hours actually used for model training.
 - training
Datasets List<Property Map> - The base entity which is the input for creating and training a model.
 - validation
Datasets List<Property Map> - The base entity which is the input for creating and training a model.
 
Supporting Types
GetModelComponentModel   
- Model
Id string - A unique model identifier.
 
- Model
Id string - A unique model identifier.
 
- model
Id String - A unique model identifier.
 
- model
Id string - A unique model identifier.
 
- model_
id str - A unique model identifier.
 
- model
Id String - A unique model identifier.
 
GetModelMetric  
- Dataset
Summaries List<GetModel Metric Dataset Summary>  - Summary of count of samples used during model training.
 - Label
Metrics List<GetReports Model Metric Label Metrics Report>  - List of metrics entries per label.
 - Model
Type string - The type of the Document model.
 - Overall
Metrics List<GetReports Model Metric Overall Metrics Report>  - Overall Metrics report for Document Classification Model.
 
- Dataset
Summaries []GetModel Metric Dataset Summary  - Summary of count of samples used during model training.
 - Label
Metrics []GetReports Model Metric Label Metrics Report  - List of metrics entries per label.
 - Model
Type string - The type of the Document model.
 - Overall
Metrics []GetReports Model Metric Overall Metrics Report  - Overall Metrics report for Document Classification Model.
 
- dataset
Summaries List<GetModel Metric Dataset Summary>  - Summary of count of samples used during model training.
 - label
Metrics List<GetReports Model Metric Label Metrics Report>  - List of metrics entries per label.
 - model
Type String - The type of the Document model.
 - overall
Metrics List<GetReports Model Metric Overall Metrics Report>  - Overall Metrics report for Document Classification Model.
 
- dataset
Summaries GetModel Metric Dataset Summary[]  - Summary of count of samples used during model training.
 - label
Metrics GetReports Model Metric Label Metrics Report[]  - List of metrics entries per label.
 - model
Type string - The type of the Document model.
 - overall
Metrics GetReports Model Metric Overall Metrics Report[]  - Overall Metrics report for Document Classification Model.
 
- dataset_
summaries Sequence[aidocument.Get Model Metric Dataset Summary]  - Summary of count of samples used during model training.
 - label_
metrics_ Sequence[aidocument.reports Get Model Metric Label Metrics Report]  - List of metrics entries per label.
 - model_
type str - The type of the Document model.
 - overall_
metrics_ Sequence[aidocument.reports Get Model Metric Overall Metrics Report]  - Overall Metrics report for Document Classification Model.
 
- dataset
Summaries List<Property Map> - Summary of count of samples used during model training.
 - label
Metrics List<Property Map>Reports  - List of metrics entries per label.
 - model
Type String - The type of the Document model.
 - overall
Metrics List<Property Map>Reports  - Overall Metrics report for Document Classification Model.
 
GetModelMetricDatasetSummary    
- Test
Sample intCount  - Number of samples used for testing the model.
 - Training
Sample intCount  - Number of samples used for training the model.
 - Validation
Sample intCount  - Number of samples used for validating the model.
 
- Test
Sample intCount  - Number of samples used for testing the model.
 - Training
Sample intCount  - Number of samples used for training the model.
 - Validation
Sample intCount  - Number of samples used for validating the model.
 
- test
Sample IntegerCount  - Number of samples used for testing the model.
 - training
Sample IntegerCount  - Number of samples used for training the model.
 - validation
Sample IntegerCount  - Number of samples used for validating the model.
 
- test
Sample numberCount  - Number of samples used for testing the model.
 - training
Sample numberCount  - Number of samples used for training the model.
 - validation
Sample numberCount  - Number of samples used for validating the model.
 
- test_
sample_ intcount  - Number of samples used for testing the model.
 - training_
sample_ intcount  - Number of samples used for training the model.
 - validation_
sample_ intcount  - Number of samples used for validating the model.
 
- test
Sample NumberCount  - Number of samples used for testing the model.
 - training
Sample NumberCount  - Number of samples used for training the model.
 - validation
Sample NumberCount  - Number of samples used for validating the model.
 
GetModelMetricLabelMetricsReport     
- Confidence
Entries List<GetModel Metric Label Metrics Report Confidence Entry>  - List of document classification confidence report.
 - Document
Count int - Total test documents in the label.
 - Label string
 - Label name
 - double
 - Mean average precision under different thresholds
 
- Confidence
Entries []GetModel Metric Label Metrics Report Confidence Entry  - List of document classification confidence report.
 - Document
Count int - Total test documents in the label.
 - Label string
 - Label name
 - float64
 - Mean average precision under different thresholds
 
- confidence
Entries List<GetModel Metric Label Metrics Report Confidence Entry>  - List of document classification confidence report.
 - document
Count Integer - Total test documents in the label.
 - label String
 - Label name
 - Double
 - Mean average precision under different thresholds
 
- confidence
Entries GetModel Metric Label Metrics Report Confidence Entry[]  - List of document classification confidence report.
 - document
Count number - Total test documents in the label.
 - label string
 - Label name
 - number
 - Mean average precision under different thresholds
 
- confidence_
entries Sequence[aidocument.Get Model Metric Label Metrics Report Confidence Entry]  - List of document classification confidence report.
 - document_
count int - Total test documents in the label.
 - label str
 - Label name
 - mean_
average_ floatprecision  - Mean average precision under different thresholds
 
- confidence
Entries List<Property Map> - List of document classification confidence report.
 - document
Count Number - Total test documents in the label.
 - label String
 - Label name
 - Number
 - Mean average precision under different thresholds
 
GetModelMetricLabelMetricsReportConfidenceEntry       
GetModelMetricOverallMetricsReport     
- Confidence
Entries List<GetModel Metric Overall Metrics Report Confidence Entry>  - List of document classification confidence report.
 - Document
Count int - Total test documents in the label.
 - double
 - Mean average precision under different thresholds
 
- Confidence
Entries []GetModel Metric Overall Metrics Report Confidence Entry  - List of document classification confidence report.
 - Document
Count int - Total test documents in the label.
 - float64
 - Mean average precision under different thresholds
 
- confidence
Entries List<GetModel Metric Overall Metrics Report Confidence Entry>  - List of document classification confidence report.
 - document
Count Integer - Total test documents in the label.
 - Double
 - Mean average precision under different thresholds
 
- confidence
Entries GetModel Metric Overall Metrics Report Confidence Entry[]  - List of document classification confidence report.
 - document
Count number - Total test documents in the label.
 - number
 - Mean average precision under different thresholds
 
- confidence_
entries Sequence[aidocument.Get Model Metric Overall Metrics Report Confidence Entry]  - List of document classification confidence report.
 - document_
count int - Total test documents in the label.
 - mean_
average_ floatprecision  - Mean average precision under different thresholds
 
- confidence
Entries List<Property Map> - List of document classification confidence report.
 - document
Count Number - Total test documents in the label.
 - Number
 - Mean average precision under different thresholds
 
GetModelMetricOverallMetricsReportConfidenceEntry       
GetModelTestingDataset   
- Bucket string
 - The name of the Object Storage bucket that contains the input data file.
 - Dataset
Id string - OCID of the Data Labeling dataset.
 - Dataset
Type string - The dataset type, based on where it is stored.
 - Namespace string
 - The namespace name of the Object Storage bucket that contains the input data file.
 - Object string
 - The object name of the input data file.
 
- Bucket string
 - The name of the Object Storage bucket that contains the input data file.
 - Dataset
Id string - OCID of the Data Labeling dataset.
 - Dataset
Type string - The dataset type, based on where it is stored.
 - Namespace string
 - The namespace name of the Object Storage bucket that contains the input data file.
 - Object string
 - The object name of the input data file.
 
- bucket String
 - The name of the Object Storage bucket that contains the input data file.
 - dataset
Id String - OCID of the Data Labeling dataset.
 - dataset
Type String - The dataset type, based on where it is stored.
 - namespace String
 - The namespace name of the Object Storage bucket that contains the input data file.
 - object String
 - The object name of the input data file.
 
- bucket string
 - The name of the Object Storage bucket that contains the input data file.
 - dataset
Id string - OCID of the Data Labeling dataset.
 - dataset
Type string - The dataset type, based on where it is stored.
 - namespace string
 - The namespace name of the Object Storage bucket that contains the input data file.
 - object string
 - The object name of the input data file.
 
- bucket str
 - The name of the Object Storage bucket that contains the input data file.
 - dataset_
id str - OCID of the Data Labeling dataset.
 - dataset_
type str - The dataset type, based on where it is stored.
 - namespace str
 - The namespace name of the Object Storage bucket that contains the input data file.
 - object str
 - The object name of the input data file.
 
- bucket String
 - The name of the Object Storage bucket that contains the input data file.
 - dataset
Id String - OCID of the Data Labeling dataset.
 - dataset
Type String - The dataset type, based on where it is stored.
 - namespace String
 - The namespace name of the Object Storage bucket that contains the input data file.
 - object String
 - The object name of the input data file.
 
GetModelTrainingDataset   
- Bucket string
 - The name of the Object Storage bucket that contains the input data file.
 - Dataset
Id string - OCID of the Data Labeling dataset.
 - Dataset
Type string - The dataset type, based on where it is stored.
 - Namespace string
 - The namespace name of the Object Storage bucket that contains the input data file.
 - Object string
 - The object name of the input data file.
 
- Bucket string
 - The name of the Object Storage bucket that contains the input data file.
 - Dataset
Id string - OCID of the Data Labeling dataset.
 - Dataset
Type string - The dataset type, based on where it is stored.
 - Namespace string
 - The namespace name of the Object Storage bucket that contains the input data file.
 - Object string
 - The object name of the input data file.
 
- bucket String
 - The name of the Object Storage bucket that contains the input data file.
 - dataset
Id String - OCID of the Data Labeling dataset.
 - dataset
Type String - The dataset type, based on where it is stored.
 - namespace String
 - The namespace name of the Object Storage bucket that contains the input data file.
 - object String
 - The object name of the input data file.
 
- bucket string
 - The name of the Object Storage bucket that contains the input data file.
 - dataset
Id string - OCID of the Data Labeling dataset.
 - dataset
Type string - The dataset type, based on where it is stored.
 - namespace string
 - The namespace name of the Object Storage bucket that contains the input data file.
 - object string
 - The object name of the input data file.
 
- bucket str
 - The name of the Object Storage bucket that contains the input data file.
 - dataset_
id str - OCID of the Data Labeling dataset.
 - dataset_
type str - The dataset type, based on where it is stored.
 - namespace str
 - The namespace name of the Object Storage bucket that contains the input data file.
 - object str
 - The object name of the input data file.
 
- bucket String
 - The name of the Object Storage bucket that contains the input data file.
 - dataset
Id String - OCID of the Data Labeling dataset.
 - dataset
Type String - The dataset type, based on where it is stored.
 - namespace String
 - The namespace name of the Object Storage bucket that contains the input data file.
 - object String
 - The object name of the input data file.
 
GetModelValidationDataset   
- Bucket string
 - The name of the Object Storage bucket that contains the input data file.
 - Dataset
Id string - OCID of the Data Labeling dataset.
 - Dataset
Type string - The dataset type, based on where it is stored.
 - Namespace string
 - The namespace name of the Object Storage bucket that contains the input data file.
 - Object string
 - The object name of the input data file.
 
- Bucket string
 - The name of the Object Storage bucket that contains the input data file.
 - Dataset
Id string - OCID of the Data Labeling dataset.
 - Dataset
Type string - The dataset type, based on where it is stored.
 - Namespace string
 - The namespace name of the Object Storage bucket that contains the input data file.
 - Object string
 - The object name of the input data file.
 
- bucket String
 - The name of the Object Storage bucket that contains the input data file.
 - dataset
Id String - OCID of the Data Labeling dataset.
 - dataset
Type String - The dataset type, based on where it is stored.
 - namespace String
 - The namespace name of the Object Storage bucket that contains the input data file.
 - object String
 - The object name of the input data file.
 
- bucket string
 - The name of the Object Storage bucket that contains the input data file.
 - dataset
Id string - OCID of the Data Labeling dataset.
 - dataset
Type string - The dataset type, based on where it is stored.
 - namespace string
 - The namespace name of the Object Storage bucket that contains the input data file.
 - object string
 - The object name of the input data file.
 
- bucket str
 - The name of the Object Storage bucket that contains the input data file.
 - dataset_
id str - OCID of the Data Labeling dataset.
 - dataset_
type str - The dataset type, based on where it is stored.
 - namespace str
 - The namespace name of the Object Storage bucket that contains the input data file.
 - object str
 - The object name of the input data file.
 
- bucket String
 - The name of the Object Storage bucket that contains the input data file.
 - dataset
Id String - OCID of the Data Labeling dataset.
 - dataset
Type String - The dataset type, based on where it is stored.
 - namespace String
 - The namespace name of the Object Storage bucket that contains the input data file.
 - object String
 - The object name of the input data file.
 
Package Details
- Repository
 - oci pulumi/pulumi-oci
 - License
 - Apache-2.0
 - Notes
 - This Pulumi package is based on the 
ociTerraform Provider.